======================== Description of the model ======================== (MM, A) LIMEPY: (Multi-Mass, Anisotropic) Lowered Isothermal Model Explorer in Python ------------------------------------------------------------------------------------- Isotropic models ^^^^^^^^^^^^^^^^ The isotropic distribution functions are defined as `(Gomez-Leyton \& Velazquez 2014) `_ .. math:: f(\hat{E}) = \displaystyle A\,E_\gamma(g, \hat{E}) where :math:`\displaystyle \hat{E} = (\phi(r_{\rm t}) - \phi - v^2/2)/s^2`, :math:`\phi` is the potential, :math:`r_{\rm t}` is the trunction radius, :math:`s` is a velocity scale and .. math:: \displaystyle E_\gamma(g, \hat{E}) = \begin{cases} \exp(\hat{E}), &g=0 \\ \displaystyle \exp(\hat{E})P(g, \hat{E}), &g>1 \end{cases} where :math:`0 < \phi-\phi(r_{\rm t}) <\phi_0/s^2` is the (positive) potential and :math:`P(a, x)` is the regularised lower incomplete gamma function :math:`P(a, x) = \gamma(a, x)/\Gamma(x)`. For some integer values of *g* several well known models are found * g = 0 : `Woolley (1954) `_ * g = 1 : `King (1966) `_ * g = 2 : `Wilson (1975) `_ Anisotropic models ^^^^^^^^^^^^^^^^^^ Radial anisotropy as in `Michie (1963) `_ can be included as follows .. math:: f(E, J^2) = \exp(-\hat{J}^2)f(\hat{E}), where :math:`\hat{J}^2 = (rv_t)^2/(2r_{\rm a}^2s^2)`, here :math:`r_{\rm a}` is the user-defined anisotropy radius. Multi-mass model ^^^^^^^^^^^^^^^^ Multi-mass models are found by summing the DFs of individual mass components and adopting for each component (following `Gunn & Griffin (1979) `_) .. math:: s_j &\propto \mu_j^{-\delta}\\ r_{{\rm a},j} &\propto \mu_j^{\eta} where :math:`\mu_j = m_j/\bar{m}` and :math:`\bar{m}` is the central density weighted mean mass.